Generation of Homogeneous ($\mathrm{sp}^{3}-\mathrm{C}_{1}$)-Bridged $\mathbf{C p} /$ Amido and $\mathbf{C p} /$ Phosphido Group 4 Metal Ziegler-Natta Catalyst Systems

Klaus Kunz, Gerhard Erker,* Steve Döring, Roland Fröhlich, ${ }^{\text { }}$ and Gerald Kehr

Organisch-Chemisches Institut, Universität Münster

 Corrensstrasse 40, D-48149 Münster, GermanyReceived August 9, 2000
The silylene-bridged $\mathrm{Cp} /$ amido group 4 metal complexes have played an important role in the development of homogeneous Ziegler-Natta catalysis. Such "constrained geometry" catalysts, derived from e.g. $1\left(\mathrm{M}^{\mathrm{IV}} \mathrm{X}_{2}=\mathrm{ZrCl}_{2}\right.$ or $\left.\mathrm{TiCl}_{2}\right)$ have been of great interest because of their polymerization and, especially, copolymerization behavior of α-olefins and other reactive alkenes. ${ }^{1}$ Cp /amido ligands with larger bridging moieties have been described, ${ }^{2}$ but it is remarkable that the corresponding chemistry of the methylene- and alkylidene- $\left(\mathrm{sp}^{3}-\mathrm{C}_{1}\right)$-bridged $\mathrm{Cp} /$ amido systems (2) appears not at all developed. ${ }^{3}$ We here wish to disclose two rather simple and straightforward synthetic routes to such systems (2) and their Cp/phosphido relatives (3) and describe first examples of their use in homogeneous Ziegler-Natta catalysis (Chart 1).

The first route starts with a "non-enolizable" fulvene, such as 6-tert-butylfulvene (4). ${ }^{4}$ Addition of, for example, lithium 4-methylanilide (5a) yields the functionalized lithium cyclopentadienide 6a. Subsequent deprotonation (LDA) gave the dianionic $\mathrm{sp}^{3}-\mathrm{C}_{1}-$ bridged "constrained geometry" ligand 7a. Analogous treatment of the fulvene $\mathbf{4}$ with lithium tert-butylamide ($\mathbf{5 b}$) followed by deprotonation with tert-butyllithium gave 7b. Transmetalation to zirconium employing the $\left[\mathrm{Cl}_{2} \mathrm{Zr}\left(\mathrm{NEt}_{2}\right)_{2}(\mathrm{THF})_{2}\right]$ reagent $(\mathbf{8 a})^{5 \mathrm{a}}$ proceeded without problems to yield the complexes 2a (66\%) and $\mathbf{2 b}(71 \%)$, respectively. Due to the chiral bridge each of these complexes exhibits four diastereotopic ${ }^{1} \mathrm{H}$ NMR Cp methine resonances [2a: $\delta 6.38,5.93(\alpha-\mathrm{CH}), 6.10,6.07(\beta-\mathrm{CH})$] and pairs of diastereotopic $-\mathrm{N}\left(\mathrm{CH}_{2}{ }^{\mathrm{AB}}\right)$ - signals [2a: δ 3.31, 3.28, $3.19,3.08] .{ }^{6}$

The related $\mathrm{sp}^{3}-\mathrm{C}_{1}$-bridged Cp /amido metal complex analogue 2c ("Cp* $\mathrm{C}_{1} \mathrm{~N}$ " ZrX_{2}) of the silylene-bridged ("Cp* $\mathrm{Si}_{1} \mathrm{~N}$ " ZrX_{2})

[^0]
Chart 1

Scheme 1

"constrained geometry" system $\mathbf{1}$ was obtained by treatment of tetramethylfulvene $\mathbf{9}^{7}$ with $\mathrm{Li}\left[\mathrm{HN}\left(\mathrm{CMe}_{3}\right)\right]$ (5b) followed by deprotonation with tert-butyllithium and transmetalation to Zr to give $\left[\mathrm{Cp}^{*}-\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CMe}_{3}\right)\right] \mathrm{Zr}\left(\mathrm{NEt}_{2}\right)_{2}(2 \mathrm{c})$ in 66% yield $\left[{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}\right.$ NMR: $\left.\delta 4.34 / 68.6\left(\mathrm{Cp}^{*} \mathrm{CH}_{2} \mathrm{~N}\right)\right]^{6}$ (Scheme 1).

Our second route to " $\mathrm{CpC}_{1} \mathrm{~N}$ " systems starts with "nonenolizable" 6 -aminofulvenes, such as $\mathbf{1 0}{ }^{8 a}$ Treatment of 6 -dimethylaminofulvene (10) with lithium anilide 5 c results in an addition/elimination sequence to cleanly yield the formiminosubstituted Cp-anion system 11 (isolated as a THF adduct in 91% yield). ${ }^{8 b}$ Addition of p-tolyllithium yields the "dianionic" ligand system isolated as the dilithio compound 12 (94\%). Subsequent transmetalation by treatment with $\left[\mathrm{Cl}_{2} \mathrm{Zr}\left(\mathrm{NEt}_{2}\right)_{2}(\mathrm{THF})_{2}\right]$ (8a) then gave the " $\mathrm{CpC}_{1} \mathrm{~N}$ " ZrX_{2} system 2d [75\% isolated, ${ }^{1} \mathrm{H}$ NMR: δ $6.03\left(\mu-\mathrm{sp}^{3}-\mathrm{CH}\right), \mathrm{Cp}$ signals at $\delta 6.14,5.90(\alpha-\mathrm{CH}), 6.00,5.96$ $(\beta-\mathrm{CH})$, four diastereotopic $\mathrm{Zr}-\mathrm{NCH}_{2}{ }^{\mathrm{AB}}$ resonances at $\delta 3.38$, 3.37, 3.28, and 3.16].

The reagent 11 adds 1 equiv of methyllithium to yield the " $\mathrm{CpC}_{1} \mathrm{~N}^{\prime} \mathrm{Li}_{2}$ reagent $\mathbf{1 3}$ (96\%), which was transmetalated by treatment with $\left[\mathrm{Cl}_{2} \mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}\right](\mathbf{8 b})^{5 \mathrm{~b}}$ to give the " $\mathrm{CpC}_{1} \mathrm{~N}$ " $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}$ complex $\mathbf{2 e}$ (69% isolated). Single crystals of $\mathbf{2 e}$ that were suited for an X-ray crystal structure analysis ${ }^{9}$ were obtained from dichloromethane at $-20^{\circ} \mathrm{C}$ during several days (Scheme 2).
In the crystal complex 2e exhibits a close to tetrahedral coordination geometry of the central titanium atom. The fused cyclopentadienide ligand is η^{5}-coordinated, exhibiting a slightly unsymmetrical array of $\mathrm{Ti}-\mathrm{C}$ bonds, with $\mathrm{Ti}-\mathrm{C} 1$ (2.266(2) $\AA \mathrm{A})$ being slightly shorter than the Ti-C2/C5 (2.314(2), 2.351(2) $\AA)$ and $\mathrm{Ti}-\mathrm{C} 3 / \mathrm{C} 4$ bonds (2.402(2), 2.424(2) A). The $\mathrm{C} 1-\mathrm{C} 6$ vector $(1.505(2) \AA)$ forms an angle of 155.3° with the Cp-plane (Cp-

[^1]
Scheme 2

Figure 1. Molecular structure of 2e. Selected bond lengths (\AA) and angles (deg): C1-C2 1.413(2), C2-C3 1.394(3), C3-C4 1.400(3), C4-C5 1.399(3), C1-C5 1.407(2), C6-C7 1.517(2), N8-C9 1.387(2), N15C16 1.449(3), N15-C17 1.449(3), N18-C19 1.445(2), N18-C20 1.452(2), C1-C6-N8 99.1(1), C1-C6-C7 112.8(1), C6-N8-Ti 104.3(1), C6-N8-C9 119.1(1), C9-N8-Ti 136.2(1), N8-Ti-N15 105.8(1), N8-$\mathrm{Ti}-\mathrm{N} 18$ 112.8(1), $\mathrm{N} 15-\mathrm{Ti}-\mathrm{N} 18$ 102.3(1).

Scheme 3

(centroid)- $\mathrm{C} 1-\mathrm{C} 6$). The $\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 8$ angle amounts to $99.1(1)^{\circ}$, and the adjacent $\mathrm{C} 6-\mathrm{N} 8$ bond length is $1.476(2) \AA$. The $\mathrm{N} 8-\mathrm{Ti}$ distance is found at $2.006(1) \AA$, which is markedly longer than the adjacent $\mathrm{Ti}-\mathrm{N} 15(1.911(2) \AA)$ and $\mathrm{Ti}-\mathrm{N} 18$ (1.898(1) \AA) bonds. The observed lengthening of the $\mathrm{Ti}-\mathrm{N} 8$ bond may indicate some increased constraint of the " $\mathrm{CpC}_{1} \mathrm{~N}$ " Ti framework of $\mathbf{2 e}$, which is also reflected by the markedly reduced $\mathrm{N} 8-\mathrm{Ti}-\mathrm{Cp}-$ (centroid) angle of 95.6° relative to that of the " $\mathrm{CpSi}_{1} \mathrm{~N}^{\prime} \mathrm{M}^{\mathrm{IV}}$ frameworks of the otherwise closely related complexes [Cp*-$\left.\mathrm{SiMe}_{2}-\mathrm{N}\left(\mathrm{CMe}_{3}\right)\right] \mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{2}$ at 100.2° or $\left[\mathrm{Cp}-\mathrm{SiMe}_{2}-\mathrm{N}\left(\mathrm{CMe}_{3}\right)\right]-$ $\mathrm{Ti}\left(\mathrm{NMe}_{2}\right)_{2}$ at $105.5^{\circ 10}$ (Figure 1).

The analogous alkylidene-bridged $\mathrm{Cp} /$ phosphido (" $\mathrm{CpC}_{1} \mathrm{P}$ ") constrained geometry Ti and Zr systems $\mathbf{3}$ were prepared starting by deprotonation of cyclohexylphosphine, followed by the addition to 6,6-dimethylfulvene to yield $\mathbf{1 5}$ (accompanied by $\sim 20 \%$ of the 2 -propenyl- CpLi deprotonation product). ${ }^{7 \text { b, }, 11}$ Subsequent deprotonation of $\mathbf{1 5}$ with LDA followed by transmetalation using $\mathbf{8 a}$ or $\mathbf{8 b}$ gave good yields of the " $\mathrm{CpC}_{1} \mathrm{P}$ " MX_{2} complexes $\mathbf{3 b}$ ($\mathrm{Zr}, 72 \%$) and 3a (Ti, 62\%) ${ }^{12}$ (Scheme 3).

The " $\mathrm{CpC}_{1} \mathrm{~N}^{\prime} \mathrm{M}^{\mathrm{IV}}\left(\mathrm{NR}_{2}\right)_{2}$ and " $\mathrm{CpC}_{1} \mathrm{P}$ " $\mathrm{M}^{\mathrm{IV}}\left(\mathrm{NR}_{2}\right)_{2}$ complexes $\mathbf{2}$ and $\mathbf{3}$ gave active homogeneous Ziegler-Natta catalysts when treated with excess methylalumoxane. Ethene polymerization activities with the new catalyst systems depended on the specific

[^2]Table 1. Selected Alkene Polymerization Reactions That Were Carried Out with " $\mathrm{CpC}_{1} \mathrm{~N}$ " MX_{2} and " $\mathrm{CpC}_{1} \mathrm{P}$ " $\mathrm{MX}_{2} / \mathrm{MAO}$ Ziegler-Natta Catalysts ${ }^{a}$

complex	M	mg [cat] ${ }^{b}$	g polymer	ethene/octene ${ }^{c}$	act^{d}
ethene polymerization ($60{ }^{\circ} \mathrm{C}$):					
$1 \mathrm{a}^{e}$	Zr	17.1	2.4	-	29
2 a	Zr	20.0	1.1	-	13
$1 b^{e}$	Zr	20.0	4.9	-	53
2b	Zr	21.5	$6.3{ }^{\text {g }}$	-	101
3a	Ti	21.0	13.5	-	114
3b	Zr	21.0	21.0^{h}	-	910
ethene/1-octene copolymerization (90 $\left.{ }^{\circ} \mathrm{C}\right)$:					
3a	Ti	16.0	$0.5^{\text {fi }}$	5:1	22
2b	Zr	20.0	3.3	4:1	37
2c	Zr	19.0	4.2	13:1	47
$1 \mathrm{a}^{e}$	Zr	18.0	$28.8^{f, k}$	4:1	660
$1 b^{e}$	Zr	20.0	$10.3{ }^{\text {fi } i}$	3:1	420
3b	Zr	21.0	$51.5^{f, i}$	6:1	2240

${ }^{a}$ Ethene polymerizations carried out in toluene at $60{ }^{\circ} \mathrm{C}$, copolymerizations in toluene/1-octene $(1: 1)$ at $90^{\circ} \mathrm{C} / 1 \mathrm{~h}, 2$ bar ethene unless indicated; $\mathrm{Al}: \mathrm{Zr} \approx 700 .{ }^{b} \mathrm{mg}$ zirconium or titanium complex. ${ }^{c}$ Component ratio in the obtained copolymer determined by ${ }^{13} \mathrm{C}$ NMR analysis. ${ }^{d}$ In g polymer/mmol [Zr] or [Ti] $\cdot \mathrm{h} \cdot$ bar. ${ }^{e}$ " $\mathrm{Cp} * \mathrm{Si}_{1} \mathrm{~N}^{\prime}{ }^{\prime} \mathrm{ZrCl}_{2}(\mathbf{1 a})$ and "Cp* $\mathrm{Si}_{1} \mathrm{~N}$ " $\mathrm{Zr}\left(\mathrm{NMe}_{2}\right)_{2}(\mathbf{1 b})$ used for a comparison. ${ }^{f}$ At 1 bar ethene pressure. ${ }^{g}$ Reaction time: $40 \mathrm{~min} .{ }^{h}$ Reaction time: $15 \mathrm{~min} .{ }^{i}$ Reaction time: $30 \mathrm{~min} .{ }^{k}$ Reaction time: 45 min .

NR/PR group, but were often found to be higher as compared to the conventional "Cp*Si ${ }_{1} \mathrm{~N}$ " Zr -derived catalysts under comparable laboratory conditions. Especially the new $\mathrm{sp}^{3}-\mathrm{C}_{1}$-bridged $\mathrm{Cp} /$ phosphidozirconium systems show increased polymerization activities (see Table 1). The new systems also form active catalysts for ethene/1-octene copolymerization. At $90{ }^{\circ} \mathrm{C}$ a considerable uptake of the linear 1-alkene was observed (up to $\sim 20 \% 1$-octene found incorporated in the copolymer under the applied nonoptimized conditions; see Table 1) leading to long-chain-branched polymer structures. ${ }^{\text {lc, } 13}$ Again, the " $\mathrm{CpC}_{1} \mathrm{P}$ " Zr -derived catalyst system is remarkably active also in ethene/1-octene copolymerization, relative to the conventional reference systems $\mathbf{1 b}$ and $\mathbf{1 a}$ / MAO under comparable conditions.

This study shows that the " $\mathrm{CpC}_{1} \mathrm{~N}^{\prime}{ }^{\mathrm{M}}{ }^{\mathrm{IV}} \mathrm{X}_{2}$ carbon relatives (2) and their " $\mathrm{CpC}_{1} \mathrm{P}$ " $\mathrm{M}^{\mathrm{IV}} \mathrm{X}_{2}$ analogues (3) of the well established "Cp* $\mathrm{Si}_{1} \mathrm{~N}$ " $\mathrm{M}^{\text {IV }} \mathrm{X}_{2}$ "constrained geometry" $\mathrm{Cp} /$ amido systems (1) ${ }^{\text {1c }}$ are readily available in good yields by means of rather straightforward synthetic routes. These new complexes serve as suitable components for the generation of active new Ziegler-Natta catalyst systems that show an interesting potential in CC-bond forming catalysis. The application-profile of the new " $\mathrm{CpC}_{1} \mathrm{~N}$ " and " $\mathrm{CpC}_{1} \mathrm{P}$ " metal catalysts is currently explored in our laboratory.

Acknowledgment. Financial support from the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Supporting Information Available: Spectroscopic data of the new compounds, including ${ }^{13} \mathrm{C}$ NMR spectra of the obtained copolymers, and details of the X-ray crystal structure analysis of complex 2e (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0029634

[^3]
[^0]: * Author for correspondence. E-mail: erker@uni-muenster.de.
 ${ }^{*}$ X-ray crystal structure analysis.
 (1) Reviews: McKnight, A. L.; Waymouth, R. M. Chem. Rev. 1998, 98 , 2587-2598. Okuda, J.; Eberle, T. Half-Sandwich Complexes as Metallocene Analogues. In Metallocenes: Synthesis, Reactivity, Applications; Togni, A., Haltermann, R. L., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 1, pp 415453.
 (2) (a) Diaz, H. V. R.; Wang, Z.; Bott, S. G. J. Organomet. Chem. 1996, 508, 91-99. Enders, M.; Rudolph, R.; Pritzkow, H. J. Organomet. Chem. 1997, 459, 251-256. Sinnema, P.-J.; van der Veen, L.; Spek, A. L.; Veldman, N.; Teuben, J. H. Organometallics 1997, 16, 4245-4247. Witte, P. T.; Meetsma, A.; Hessen, B.; Budzelaar, P. H. M. J. Am. Chem. Soc. 1997, 119 , 10561-10562. Gomes, P. T.; Green, M. L. H.; Martins, A. M. J. Organomet. Chem. 1998, 551, 133-138. (b) Rieger, B. J. Organomet. Chem. 1991, 420, C17-C20. Christie, S. D. R.; Man, K. W.; Whitby, R. J.; Slawin, A. M. Z. Organometallics 1999, 18, 348-359. (c) For sp^{2} - C_{1}-bridged analogues see: Duda, L.; Erker, G.; Fröhlich, R.; Zippel, F. Eur. J. Inorg. Chem. 1998, 11531162. Bertuleit, A.; Könemann, M.; Duda, L., Erker, G.; Fröhlich, R. Top. Catal. 1999, 7, 37-44.
 (3) Könemann, M.; Erker, G.; Fröhlich, R.; Würthwein, E.-U. J. Am. Chem. Soc. 1997, 119, 11155-11164.
 (4) (a) Stone, K. L.; Little, R. D. J. Org. Chem. 1984, 49, 1849-1853. (b) For Cp -anion syntheses by nucleophilic addition to fulvenes see, e.g.: Ziegler, K.; Schäfer, W. Liebigs Ann. Chem. 1934, 511, 101-109. Ziegler, K.; Gellert, H.-G.; Martin, H.; Nagel, K.; Schneider, J. Liebigs Ann. Chem. 1954, 589, 91-121. Sullivan, M. F.; Little, W. F. J. Organomet. Chem. 1967, 8, 277285. Renaut, P.; Tainturier, G.; Gautheron, B. J. Organomet. Chem. 1978, 148, 35-42.
 (5) (a) Kempe, P.; Brenner, S.; Arndt, P. Z. Anorg. Allg. Chem. 1995, 621, 2021-2024. (b) Benzing, E.; Kornicker, W. Chem. Ber. 1961, 94, 22632267.

[^1]: (6) Typical example: 2c: $290 \mathrm{mg}(66 \%)$ of $\mathbf{2 c}$ isolated as a colorless oil. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{Zr}(440.8)$: C, $59.95 ; \mathrm{H}, 9.83 ; \mathrm{N}, 9.53$. Found: C, 59.10; H, 10.54; N, 9.67. ${ }^{1} \mathrm{H}$ NMR (THF- $d_{8}, 200 \mathrm{MHz}$): $\delta 4.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.5-3.2\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.08,2.06\left(\mathrm{~s}\right.$, each $\left.6 \mathrm{H}, \mathrm{CpCH}_{3}\right), 1.15(\mathrm{~s}, 9 \mathrm{H}$, CMe_{3}), $0.97\left(\mathrm{t}, 12 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (THF- $d_{8}, 150 \mathrm{MHz}$): $\delta 119.5$ (ipso-C), $68.6\left(\mathrm{CH}_{2}\right), 55.6 / 29.4\left(\mathrm{CMe}_{3}\right), 43.5 / 15.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 11.2 / 10.5$ $\left(\mathrm{CpCH}_{3}\right)$.
 (7) (a) Hashimoto, H.; Tobita, H.; Ogino, H. Organometallics 1993, 12, 2182-2187. See also: Döring, S.; Erker, G. Synthesis 2001, 43-45. (b) Heidemann, T.; Jutzi, P. Synthesis 1994, 777-778.
 (8) (a) Hafner, K.; Schulz, G.; Wagner, K. Liebigs Ann. Chem. 1964, 678, 39-53. See also: Hafner, K.; Vöpel, K. H.; Ploss, G.; König, C. Org. Synth. 1967, 47, 52-54. (b) Kunz, K.; Erker, G.; Kehr, G.; Fröhlich, R. Organometallics 2001, 20, 392-400.
 (9) For details, see the Supporting Information.

[^2]: (10) Carpenetti, D. W.; Kloppenburg, L.; Kupec, J. T.; Petersen, J. L. Organometallics 1996, 15, 1572-1581.
 (11) For metal complexes containing monoanionic $\mathrm{Cp}-\mathrm{CMe}_{2}$-PHR- ligands see: Koch, T.; Blaurock, S.; Somoza, F. B., Jr.; Voigt, A.; Kirmse, R.; HeyHawkins, E. Organometallics 2000, 19, 2556-2563.

[^3]: (12) 3b: $312 \mathrm{mg}(72 \%)$ isolated as a red oil. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{PZr}$ (455.8): C, 57.98 ; H, 9.07 . Found: C, 58.27 ; H, $8.61 \% .{ }^{1} \mathrm{H}$ NMR (toluene$d_{8}, 600 \mathrm{MHz}, 298 \mathrm{~K}$): $\delta 5.92,5.47$ (m, each $2 \mathrm{H}, \beta$ - and $\alpha-\mathrm{H}$ of Cp), 3.26, $3.15\left(\mathrm{~m}\right.$, each $\left.8 \mathrm{H}, \mathrm{NCH}_{2}\right), 1.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{PH}}=10 \mathrm{~Hz}, \mathrm{CMe}_{2}\right), 1.99-1.23(\mathrm{~m}, 11$ $\left.\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (toluene- $d_{8}, 150$ $\mathrm{MHz}, 298 \mathrm{~K}): \delta 124.0$ (ipso-C of Cp), $108.1(\beta-\mathrm{CH}$ of Cp$), 106.4\left({ }^{3} \mathrm{~J}_{\mathrm{PC}}=\right.$ $3.6 \mathrm{~Hz}, \alpha-\mathrm{CH}$ of Cp$), 42.5\left({ }^{3} \mathrm{~J}_{\mathrm{PC}} \leq 2 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 33.2\left(\mathrm{CMe}_{2}\right), 30.9\left({ }^{2} J_{\mathrm{PC}}=\right.$ $\left.13 \mathrm{~Hz}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 35.6\left({ }^{1} J_{\mathrm{PC}}=38 \mathrm{~Hz}, \mathrm{CH}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 36.0\left(^{2} J_{\mathrm{PC}}=16 \mathrm{~Hz}\right)$, $27.6\left({ }^{3} J_{\mathrm{PC}}=11 \mathrm{~Hz}\right), 26.9\left(\mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 16.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{3}\right) .{ }^{31} \mathrm{P}$ NMR (toluene$\left.d_{8}, 81 \mathrm{MHz}, 298 \mathrm{~K}\right): \delta-11.5$.
 (13) Wang, W.-J.; Kolodka, E.; Zhu, S.; Hamielec, A. E. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 2949-2957. Liu, W.; Ray III, D. G.; Rinaldi, P. L. Macromolecules 1999, 32, 3817-3819.

