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The silylene-bridged Cp/amido group 4 metal complexes have
played an important role in the development of homogeneous
Ziegler-Natta catalysis. Such “constrained geometry” catalysts,
derived from e.g.1 (MIVX2 ) ZrCl2 or TiCl2) have been of great
interest because of their polymerization and, especially, copo-
lymerization behavior ofR-olefins and other reactive alkenes.1

Cp/amido ligands with larger bridging moieties have been
described,2 but it is remarkable that the corresponding chemistry
of the methylene- and alkylidene-(sp3-C1)-bridged Cp/amido
systems (2) appears not at all developed.3 We here wish to disclose
two rather simple and straightforward synthetic routes to such
systems (2) and their Cp/phosphido relatives (3) and describe first
examples of their use in homogeneous Ziegler-Natta catalysis
(Chart 1).

The first route starts with a “non-enolizable” fulvene, such as
6-tert-butylfulvene (4).4 Addition of, for example, lithium 4-meth-
ylanilide (5a) yields the functionalized lithium cyclopentadienide
6a. Subsequent deprotonation (LDA) gave the dianionic sp3-C1-
bridged “constrained geometry” ligand7a. Analogous treatment
of the fulvene4 with lithium tert-butylamide (5b) followed by
deprotonation withtert-butyllithium gave7b. Transmetalation to
zirconium employing the [Cl2Zr(NEt2)2(THF)2] reagent (8a)5a

proceeded without problems to yield the complexes2a (66%)
and2b (71%), respectively. Due to the chiral bridge each of these
complexes exhibits four diastereotopic1H NMR Cp methine
resonances [2a: δ 6.38, 5.93 (R-CH), 6.10, 6.07 (â-CH)] and
pairs of diastereotopic-N(CH2

AB)- signals [2a: δ 3.31, 3.28,
3.19, 3.08].6

The related sp3-C1-bridged Cp/amido metal complex analogue
2c (“Cp*C1N”ZrX 2) of the silylene-bridged (“Cp*Si1N”ZrX 2)

“constrained geometry” system1 was obtained by treatment of
tetramethylfulvene97 with Li[HN(CMe3)] (5b) followed by
deprotonation withtert-butyllithium and transmetalation to Zr to
give [Cp*-CH2-N(CMe3)]Zr(NEt2)2 (2c) in 66% yield [1H/13C
NMR: δ 4.34/68.6 (Cp*CH2N)]6 (Scheme 1).

Our second route to “CpC1N” systems starts with “non-
enolizable” 6-aminofulvenes, such as10.8a Treatment of 6-di-
methylaminofulvene (10) with lithium anilide 5c results in an
addition/elimination sequence to cleanly yield the formimino-
substituted Cp-anion system11 (isolated as a THF adduct in 91%
yield).8b Addition of p-tolyllithium yields the “dianionic” ligand
system isolated as the dilithio compound12 (94%). Subsequent
transmetalation by treatment with [Cl2Zr(NEt2)2(THF)2] (8a) then
gave the “CpC1N”ZrX 2 system2d [75% isolated,1H NMR: δ
6.03 (µ-sp3-CH), Cp signals atδ 6.14, 5.90 (R-CH), 6.00, 5.96
(â-CH), four diastereotopic Zr-NCH2

AB resonances atδ 3.38,
3.37, 3.28, and 3.16].

The reagent11 adds 1 equiv of methyllithium to yield the
“CpC1N”Li 2 reagent13 (96%), which was transmetalated by treat-
ment with [Cl2Ti(NMe2)2] (8b)5b to give the “CpC1N”Ti(NMe2)2

complex2e(69% isolated). Single crystals of2ethat were suited
for an X-ray crystal structure analysis9 were obtained from
dichloromethane at-20 °C during several days (Scheme 2).

In the crystal complex2e exhibits a close to tetrahedral
coordination geometry of the central titanium atom. The fused
cyclopentadienide ligand isη5-coordinated, exhibiting a slightly
unsymmetrical array of Ti-C bonds, with Ti-C1 (2.266(2) Å)
being slightly shorter than the Ti-C2/C5 (2.314(2), 2.351(2) Å)
and Ti-C3/C4 bonds (2.402(2), 2.424(2) Å). The C1-C6 vector
(1.505(2) Å) forms an angle of 155.3° with the Cp-plane (Cp-
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(centroid)-C1-C6). The C1-C6-N8 angle amounts to 99.1(1)°,
and the adjacent C6-N8 bond length is 1.476(2) Å. The N8-Ti
distance is found at 2.006(1) Å, which is markedly longer than
the adjacent Ti-N15 (1.911(2) Å) and Ti-N18 (1.898(1) Å)
bonds. The observed lengthening of the Ti-N8 bond may indicate
some increased constraint of the “CpC1N”Ti framework of 2e,
which is also reflected by the markedly reduced N8-Ti-Cp-
(centroid) angle of 95.6° relative to that of the “CpSi1N”M IV

frameworks of the otherwise closely related complexes [Cp*-
SiMe2-N(CMe3)]Zr(NMe2)2 at 100.2° or [Cp-SiMe2-N(CMe3)]-
Ti(NMe2)2 at 105.5°10 (Figure 1).

The analogous alkylidene-bridged Cp/phosphido (“CpC1P”)
constrained geometry Ti and Zr systems3 were prepared starting
by deprotonation of cyclohexylphosphine, followed by the addi-
tion to 6,6-dimethylfulvene to yield15 (accompanied by∼20%
of the 2-propenyl-CpLi deprotonation product).7b,11 Subsequent
deprotonation of15with LDA followed by transmetalation using
8a or 8b gave good yields of the “CpC1P”MX2 complexes3b
(Zr, 72%) and3a (Ti, 62%)12 (Scheme 3).

The “CpC1N”M IV(NR2)2 and “CpC1P”MIV(NR2)2 complexes2
and 3 gave active homogeneous Ziegler-Natta catalysts when
treated with excess methylalumoxane. Ethene polymerization
activities with the new catalyst systems depended on the specific

NR/PR group, but were often found to be higher as compared to
the conventional “Cp*Si1N”Zr-derived catalysts under comparable
laboratory conditions. Especially the new sp3-C1-bridged Cp/
phosphidozirconium systems show increased polymerization
activities (see Table 1). The new systems also form active catalysts
for ethene/1-octene copolymerization. At 90°C a considerable
uptake of the linear 1-alkene was observed (up to∼20% 1-octene
found incorporated in the copolymer under the applied nonopti-
mized conditions; see Table 1) leading to long-chain-branched
polymer structures.1c,13 Again, the “CpC1P”Zr-derived catalyst
system is remarkably active also in ethene/1-octene copolymer-
ization, relative to the conventional reference systems1b and1a/
MAO under comparable conditions.

This study shows that the “CpC1N”M IVX2 carbon relatives (2)
and their “CpC1P”MIVX2 analogues (3) of the well established
“Cp*Si1N”M IVX2 “constrained geometry” Cp/amido systems (1)1c

are readily available in good yields by means of rather straight-
forward synthetic routes. These new complexes serve as suitable
components for the generation of active new Ziegler-Natta cata-
lyst systems that show an interesting potential in CC-bond forming
catalysis. The application-profile of the new “CpC1N” and
“CpC1P” metal catalysts is currently explored in our laboratory.
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Scheme 2

Figure 1. Molecular structure of2e. Selected bond lengths (Å) and angles
(deg): C1-C2 1.413(2), C2-C3 1.394(3), C3-C4 1.400(3), C4-C5
1.399(3), C1-C5 1.407(2), C6-C7 1.517(2), N8-C9 1.387(2), N15-
C16 1.449(3), N15-C17 1.449(3), N18-C19 1.445(2), N18-C20
1.452(2), C1-C6-N8 99.1(1), C1-C6-C7 112.8(1), C6-N8-Ti 104.3(1),
C6-N8-C9 119.1(1), C9-N8-Ti 136.2(1), N8-Ti-N15 105.8(1), N8-
Ti-N18 112.8(1), N15-Ti-N18 102.3(1).

Scheme 3

Table 1. Selected Alkene Polymerization Reactions That Were
Carried Out with “CpC1N”MX 2 and “CpC1P”MX2/MAO
Ziegler-Natta Catalystsa

complex M mg[cat]b g polymer ethene/octenec actd

ethene polymerization (60°C):
1ae Zr 17.1 2.4 - 29
2a Zr 20.0 1.1 - 13
1be Zr 20.0 4.9 - 53
2b Zr 21.5 6.3g - 101
3a Ti 21.0 13.5 - 114
3b Zr 21.0 21.0h - 910

ethene/1-octene copolymerization (90°C):
3a Ti 16.0 0.5f,i 5:1 22
2b Zr 20.0 3.3 4:1 37
2c Zr 19.0 4.2 13:1 47
1ae Zr 18.0 28.8f,k 4:1 660
1be Zr 20.0 10.3f,i 3:1 420
3b Zr 21.0 51.5f,i 6:1 2240

a Ethene polymerizations carried out in toluene at 60°C, copoly-
merizations in toluene/1-octene (1:1) at 90°C/1 h, 2 bar ethene unless
indicated; Al:Zr≈ 700. b mg zirconium or titanium complex.c Com-
ponent ratio in the obtained copolymer determined by13C NMR
analysis.d In g polymer/mmol [Zr] or [Ti]‚h‚bar. e “Cp*Si1N”ZrCl2 (1a)
and “Cp*Si1N”Zr(NMe2)2 (1b) used for a comparison.f At 1 bar ethene
pressure.g Reaction time: 40 min.h Reaction time: 15 min.i Reaction
time: 30 min.k Reaction time: 45 min.
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